EACH REGULAR NUMBER STRUCTURE IS BIREGULAR

BY

H. SIMMONS

ABSTRACT

Roughly speaking we show that for certain number structures $\mathfrak{A}, \mathfrak{B}$ with $\mathfrak{B} \subseteq \mathfrak{A}$, if \mathfrak{B} is bounded above in \mathfrak{A} then \mathfrak{B} is bounded below in \mathfrak{A} .

O. Introduction

In this note we answer a question posed by Hirschfeld in [2]. All the results of [2] that we require are contained in [3] and since [3] is more accessible than [2] we refer to [3] rather than [2].

Hirschfeld's results are concerned with the class \mathscr{E}_N of structures which are e.c. for full number theory N. He considers several subclasses of \mathscr{E}_N , in particular he introduces (in [3, 10.1 and 10.14(ii)]) the subclasses \mathcal{R}_{N} , \mathcal{R}_{N} of regular and biregular structures. He shows (in [3, 10.16]) that $\mathscr{B}_N \subseteq \mathscr{R}_N$ and asks (in [3, 12.14(ii)]) whether $\mathcal{B}_N = \mathcal{R}_N$. The main result of this note (i.e. Theorem 9) is a proof of this equality. We also strengthen a remark of [3, p. 160, last paragraph] and use this to give a simple proof of [3, 11.9].

This note is written in the style of [1], [4] and so we assume a slight familiarity with these papers. In particular we use the notation, terminology, etc. of [1], [4], sometimes without explanation.

Notice that since [1], [4] are concerned with a wider context than [3] we will require certain simple minded generalizations of some of the results of [3].

1. Required lemmas

Let N be full first order number theory formalized in some suitable language, let P be peano number theory formalized in the same language, and let B be the theory axiomatized by $P \cap V_2$. (For us a theory is a deductively closed set of

Received September 12, 1975

sentences.) We are concerned with certain models of B. (In [3] only models of $N \cap V_2$ are considered.)

First we require two formal properties of B.

Let us say a formula θ is a Δ -formula if all the quantifiers of θ are bounded. The following result is essentially the solution of Hilbert's 10th problem.

LEMMA 1. Let θ be a Δ -formula. Then there is an \exists ₁-formula ϕ and an V_1 -formula ψ , each having the same free variables as θ , such that $B \vdash \theta \leftrightarrow \phi$ and $B \vdash \theta \leftrightarrow \psi$.

This lemma shows that, for many purposes, Δ -formulas can be treated as quantifier-free formulas.

We will require the following normal form for certain \exists_1 -formulas.

LEMMA 2. There is a Δ -formula $T(u, v, w, x)$ such that for each \exists_1 -formula $\theta(v, w)$ there is some $n \in \omega$ with

$$
B \vdash \theta(v, w) \leftrightarrow D(v, w, n)
$$

where $D(v, w, x)$ *is* $(\exists u)T(u, v, w, x)$.

Let $\mathscr E$ be the class of models of B which are e.c., so $\mathscr U \in \mathscr E$ if and only if $\mathscr U \models B$ and for each model \mathfrak{B} of B,

$$
\mathfrak{A}\subseteq \mathfrak{B},\ \mathfrak{A}={}_{1}\mathfrak{B}\Rightarrow \mathfrak{A}\leq_{1}\mathfrak{B}\,.
$$

We easily check that

$$
\mathfrak{B} < {}_1\mathfrak{A} \in \mathscr{E} \Rightarrow \mathfrak{B} \in \mathscr{E}
$$

and that for all $\mathfrak{A}, \mathfrak{B} \in \mathcal{E}$

$$
\mathfrak{B} < \, \mathfrak{A} \Rightarrow \mathfrak{B} < \, \mathfrak{A} \, .
$$

(Notice that the class studied in [3] is $\mathscr{E}_N = \mathscr{E} \cap \text{Md}(\text{N} \cap \text{V}_2)$.)

For each model $\mathfrak A$ of B and subset X of A (the carrier set of $\mathfrak A$) we put

$$
K(\mathfrak{A},X)=\cap \{\mathfrak{B}\colon \mathfrak{B}\lt_1 \mathfrak{A}, X\subseteq B\}.
$$

In particular, $K(\mathfrak{A}, \emptyset)$ is the core $K(\mathfrak{A})$ of $\mathfrak A$ considered in [4, §5].

Using [4, 1.3] and the above remarks we obtain the following.

LEMMA 3. Let $\mathfrak{A} \in \mathcal{E}$ and $X \subseteq A$. Then $K(\mathfrak{A},X) \in \mathcal{E}$ and $K(\mathfrak{A},X) \leq_2 \mathfrak{A}$.

We are concerned with $K(\mathfrak{A}, X)$ for finite X only. Notice that

$$
K\left(\mathfrak{A},\{a_0,\cdots,a_r\}\right)=K\left(\mathfrak{A},\{a\}\right)
$$

where $a = 2^{a_0}3^{a_1} \cdots p_r^{a_r}$, so we may assume X is a singleton. We write

$$
K(\mathfrak{A},a) \quad \text{for} \quad K(\mathfrak{A},\{a\}).
$$

There is a useful characterization of the elements of $K(\mathfrak{A}, a)$. This next lemma is proved in the same way as [4, 5.6].

LEMMA 4. Let $\mathfrak{A} \models B$ *and let a be an element of* \mathfrak{A} *. For each element b of* \mathfrak{A} *the following are equivalent:*

i) *b* is an element of $K(\mathfrak{A}, a)$;

ii) *there is some* $n \in \omega$ *such that*

$$
\mathfrak{A}\models D\left(b,a,n\right)
$$

and

$$
\mathfrak{A}\models (\forall v_1,v_2)[D(v_1,a,n)\wedge D(v_2,a,n)\rightarrow v_1=v_2].
$$

Next we need to know that the standard part of certain models of B is definable. Part (i) of the next lemma is just [4, 2.4] and part (ii) is an easy generalization of [3, 8.29].

LEMMA 5.

i) *There is an* \exists ₂-formula $I(v)$ such that for each $\mathfrak{A} \in \mathscr{E}$ and element a of \mathfrak{A} ,

$$
\mathfrak{A}\vDash I(a)\Leftrightarrow a\in\omega.
$$

ii) *There is an* \forall_1 -formula $J(v, w)$ such that for each $\mathfrak{A} \in \mathcal{E}$ and elements a, p of $\mathfrak{A}, \text{ if } K(\mathfrak{A}) \leq p \text{ then}$

$$
\mathfrak{A}\models J(a,p)\Leftrightarrow a\in\omega.
$$

Finally we need an overspill principle, The following lemma is essentially the result of [3, p. 154].

LEMMA 6 (\exists_1 -overspill). Let $\psi(y, x)$ be an \exists_1 -formula (where y and the finite *sequence x are the only free variables of* ψ *). Let* $\mathcal{H} \in \mathcal{E}$ *be such that* $K(\mathcal{H})$ *is bounded above in* ?l *and let a be a sequence of elements of* ?[*(exactly matching x*). If, for each $n \in \omega$, $\mathfrak{A} \models \psi(n, a)$ then there is some infinite element q of \mathfrak{A} such *that* $\mathfrak{A} \models \psi(q, a)$.

2. The results

The following definition extends [3, 10.1].

DEFINITION. A model \mathfrak{A} of B is regular if $\mathfrak{A} \in \mathscr{E}$ and for each element a of \mathfrak{A} , $K(\mathfrak{A}, a)$ is bounded above in $\mathfrak{A}.$ We let \mathfrak{R} be the class of regular models of B.

Notice that the regular structures of [3] are just the members of

$$
\mathcal{R}_N = \mathcal{R} \cap \mathcal{E}_N = \mathcal{R} \cap \mathrm{Md}(\mathrm{N} \cap \mathrm{V}_2).
$$

Our first theorem strengthens the remark in [3, p. 160, last paragraph].

THEOREM 7. For each $\exists z$ -formula $\phi(w, x)$ there is a Δ -formula $\psi(w, x, y)$ such that the following holds. For each $A \in \mathcal{R}$, sequence **a** of elements of A (matching **x**), element b of \mathcal{R} such that $K(\mathcal{R}, a) < b$, and sequence **n** of elements of *to (matching w),*

$$
\mathfrak{A}\models\phi\left(\mathbf{n},\mathbf{a}\right)\Leftrightarrow\mathfrak{A}\models\psi\left(\mathbf{n},\mathbf{a},\mathbf{b}\right).
$$

PROOF. There is some quantifier-free formula $\theta(u, v, w, x)$ such that ϕ is the formula $(\exists u)$ $(\forall v)$ θ (u, v, w, x) . Let ψ be the formula

$$
(\exists u < y) (\forall v < y) \theta (u, v, w, x).
$$

The required result now follows using Lemma 3.

This theorem can be used to give a simple proof of [3, 11.9].

For each $\mathfrak{A} \in \mathcal{R}$ let $\Delta(\mathfrak{A})$ be the set of number theoretic relations $R(w)$ such that for some Δ -formula $\theta(w, x)$ and sequence **a** of elements of \mathfrak{A} ,

$$
R(n) \Leftrightarrow \mathfrak{A} \models \theta(n, a)
$$

(where, of course, **n** is a sequence of elements of ω).

THEOREM 8. Let $\mathfrak{A} \in \mathcal{R}$. Then $\Delta(\mathfrak{A})$ is closed under arithmetical definability.

PROOF. Clearly $\Delta(\mathfrak{A})$ is closed under the propositional connectives, so it is sufficient to show that $\Delta(\mathfrak{A})$ is closed under existential quantification.

Let $R(v, w) \in \Delta(\mathfrak{A})$ and let $\theta(v, w, x)$ be a Δ -formula and a a sequence of elements of $⁹$ such that</sup>

$$
R(m, n) \Leftrightarrow \mathfrak{A} \models \theta(m, n, a).
$$

Then

$$
(\exists v) R(v, n) \Leftrightarrow \mathfrak{A} \models (\exists v)[I(v) \land \theta(v, n, a)]
$$

so that, since the right hand formula is B-equivalent to an \exists ₂-formula, the required result follows by Theorem 7.

Finally we come to the main result of this note.

Given two models $\mathfrak{A}, \mathfrak{B},$ of B such that $\mathfrak{B} \subseteq \mathfrak{A}$, we say \mathfrak{B} is bounded below in \mathfrak{A} if there is an *infinite* element d of $\mathfrak A$ such that for each *infinite* element e of $\mathfrak B$, $d \leq e$.

THEOREM 9. Let $\mathfrak{A} \in \mathcal{R}$ and let a be an element of \mathfrak{A} . Then $K(\mathfrak{A}, a)$ is *bounded below in* \mathfrak{A} *.*

PROOF. Since $\mathcal{H} \in \mathcal{R}$ there is some element p of \mathcal{H} such that $K(\mathcal{H}, a) < p$. Consider the set $X \subseteq \omega$ defined by

$$
n \in X \Leftrightarrow \mathfrak{A} \models (\exists v)[\neg J(v, p) \land D(v, a, n)].
$$

By Theorem 7 there is some Δ -formula $\theta(x, w_1, w_2, y)$ and element b of $\mathfrak A$ such that

$$
n \in X \Leftrightarrow \mathfrak{A} \models \theta (n, a, p, b).
$$

Let $\phi(y, z, a, p, b)$ be the Δ -formula (with parameters a, p, b)

$$
(\forall x < y) [\theta (x, a, p, b) \rightarrow (\exists v < p) (\exists u < p) [T (u, v, a, x) \land z < v]]
$$

and let $\psi(y, a, p, b)$ be the \exists_1 -formula

$$
(\exists x)(\neg J(z,p)\wedge\phi(y,z,a,p,b)].
$$

For each $n \in X$ let c_n be an element of $\mathfrak A$ such that

$$
\mathfrak{A}\models \neg J(c_n,p),\ \mathfrak{A}\models D(c_n,a,n).
$$

Notice that Lemma 5(ii) shows that c_n is infinite.

Consider any $m \in \omega$ and let d be an infinite element of $\mathfrak A$ such that

 $d < min\{c_n : n \in X, n < m\}.$

If $K(\mathfrak{A}, a)$ is bounded below in $\mathfrak A$ by d then we are done. If not then there is some infinite element c of $K(\mathfrak{A},a)$ such that $c < d$, and so for each $n \in X$, $n < m$

 $\mathfrak{A} \models (\exists v) [D(v, a, n) \land c \leq v].$

But $K(\mathfrak{A}, a) \leq_2 \mathfrak{A}$ so for each $n \in X$, $n < m$,

$$
K(\mathfrak{A},a) \models (\exists v) [D(v,a,n) \land c < v].
$$

Thus, for each $n \in X$, $n < m$,

$$
\mathfrak{A}\models (\exists v < p) \, (\exists u < p) \, [\, T(u, v, a, n) \wedge c < v \,]
$$

so that $\mathfrak{A} \models \phi(m, c, a, p, b)$. Hence, since c is an infinite element of $K(\mathfrak{A}, a)$,

$$
\mathfrak{A}\models\psi(m,a,p,b).
$$

Now ψ is an \exists ₁-formula so that Lemma 6 gives us an infinite element q of $\mathfrak A$ such that

$$
\mathfrak{A}\models\psi(q,a,p,b).
$$

In particular there is some infinite element d of $\mathfrak A$ such that

$$
\text{(a)} \quad n \in X \Rightarrow \mathfrak{A} \models (\exists v)[D(v, a, n) \land d < v].
$$

We show that $K(\mathfrak{A},a)$ is bounded below in $\mathfrak A$ by d.

Let e be any infinite element of $K(\mathfrak{A}, a)$. So

$$
\mathfrak{A} \models \neg J(e, p)
$$

and, by Lemma 4, there is some $n \in \omega$ such that

$$
(\gamma) \qquad \qquad \mathfrak{A} \models D \ (e, a, n)
$$

$$
\text{(8)} \hspace{1cm} \mathfrak{A} \vDash (\mathbf{V} v_1, v_2) [D(v_1, a, n) \wedge D(v_2, a, n) \rightarrow v_1 = v_2].
$$

From (β), (γ) we see that $n \in X$ and so (α), (δ) give $d < e$, as required.

REFERENCES

1. D. C. Goldrei, A. Macintyre and H. Simmons, *The forcing companions of number theories,* Israel J. Math. 14 (1973), 317-337.

2. J. Hirsch[eld, *Existentially complete and generic structures in arithmetic,* Doctoral Dissertation, University of Yale, 1972.

3. J. Hirschfeld and W. H. Wheeler, *Forcing, Arithmetic, Division Rings, Springer Lecture notes in Mathematics,* vol. 454.

4. A. Macintyre and H. Simmons, *Algebraic properties of number theories,* Israel J. Math. 22 (1975), 7-27.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ABERDEEN **SCOTLAND**