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EACH REGULAR NUMBER STRUCTURE 
IS BIREGULAR 

BY 

H. SIMMONS 

ABSTRACT 

Roughly speaking we show that for certain number  structures ?I, ~ with ~ C_ ?1, 
if ~ is bounded above in ?! then ~ is bounded below in ?l. 

O. Introduction 

In this note we answer a question posed by Hirschfeld in [2]. All the results of 

[2] that we require are contained in [3] and since [3] is more accessible than [2] 

we refer to [3] rather than [2]. 

Hirschfeld's results are concerned with the class ~'N of structures which are e.c. 

for full number theory N. He considers several subclasses of YN, in particular he 

introduces (in [3, 10.1 and 10.14(ii)]) the subclasses ~N, ~N of regular and 

biregular structures. He shows (in [3, 10.16]) that ~N _C ~ and asks (in ~3, 

12.14(ii)]) whether ~N -- ~N. The main result of this note (i.e. Theorem 9) is a 

proof of this equality. We also strengthen a remark of [3, p. 160, last paragraph] 

and use this to give a simple proof of [3, 11.9]. 

This note is written in the style of [1], [4] and so we assume a slight familiarity 

with these papers. In particular we use the notation, terminology, etc. of [1], [4], 

sometimes without explanation. 

Notice that since [1], [4] are concerned with a wider context than [3] we will 

require certain simple minded generalizations of some of the results of [3]. 

1. Required lemmas 

Let N be full first order number theory formalized in some suitable language, 

let P be peano number theory formalized in the same language, and let B be the 

theory axiomatized by P f)V2. (For us a theory is a deductively closed set of 
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sentences.) We are concerned with certain models of B. (In [3] only models of 

N n V2 are considered.) 

First we require two formal properties of B. 

Let us say a formula 0 is a A-formula if all the quantifiers of 0 are bounded. 

The following result is essentially the solution of Hilbert's 10th problem. 

LEMMA 1. Let 0 be a A-formula. Then there is an 3,-formula ~k and an 

V: formula O, each having the same free variables as O, such that B F- 0 ~ ~b and 

B k 0 <--'> ~0. 

This lemma shows that, for many purposes, A-formulas can be treated as 

quantifier-free formulas. 

We will require the following normal form for certain :tl-formulas. 

LEMMA 2. There is a A-formula T(u, v, w, x)  such that for each 3,-formula 

O(v, w) there is some n E w with 

B k  O(v, w)<-* D(v ,  w ,n )  

where D ( v , w , x )  is ( 3 u ) T ( u , v , w , x ) .  

Let ~ be the class of models of B which are e.c., so ,~! E ~ if and only if ~l ~ B 

and for each model ~ of B, 

We easily check that 

and that for all 9I, ~ E ~' 

(Notice that the class studied in [3] is ~N = ~ N Md(N NV2).) 

For each model 9~ of B and subset X of A (the carrier set of ?l) we put 

K (~1, X) = n { ~ :  ~ < , ? I , X  C_ B}. 

In particular, K(9/,O) is the core K(?I) of ~ considered in [4, §5]. 

Using [4, 1.3] and the above remarks we obtain the following. 

LEMMA 3. Let ?IE ~ and X C _ A .  Then K( ~ I ,X) E  ~ and K(?I ,X)<2?I .  

We are concerned with K(?I, X) for finite X only. Notice that 

K (~l,{a0,.. . ,  a,}) = K (?l,{a}) 
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where a = 2"3 ° ' . . .  p,"', so we may assume X is a singleton. We write 

K ( ? l , a )  for K(?l ,{a}).  

There is a useful characterization of the elements of K(?l, a). This next lemma 

is proved in the same way as [4, 5.6]. 

LEMMA 4. Let ?1[ i= B and let a be an element of ?l. For each element b of ?I 

the following are equivalent: 

i) b is an element of K(?I, a); 

ii) there is some n ~ ~o such that 

?l~ D ( b , a , n )  
and 

?1 ~ (Vv,, v2)[D(v,, a, n) ^ D(v2, a, n)---~ v , -  v2]. 

Next we need to know that the standard part of certain models of B is 

definable. Part (i) of the next lemma is just [4, 2.4] and part (ii) is an easy 

generalization of [3, 8.29]. 

LEMMA 5. 

i) There is an 32-formula I ( v ) such that for each ~1 ~ ~ and element a of P[, 

?I ~ l ( a )  ¢:~ a ~ w .  

ii) There is an Wrformula J ( v, w) such that for each ?I E ~ and elements a, p of 

?l, if K(?I) < p then 

~l~ J (a ,p )  <~ a E w. 

Finally we need an overspill principle, The following lemma is essentially the 

result of [3, p. 154]. 

LEMMA 6 (:]l-overspill). Let qJ(y, x) be an 3,-formula (where y and the finite 

sequence x are the only free variables of tp). Let ?! E ~g be such that K(?l) is 

bounded above in ?l and let a be a sequence of elements of ?[ (exactly matching 

x). If, for each n E ~o, ~11 = ~b(n,a) then there is some infinite element q of ?l such 

that ~1 ~ 6(q,a).  

2. The results 

The following definition extends [3, 10.1]. 

DEFINITION. A model ?l of B is regular if ~?! E ~ and for each element a of ?l, 

K(gl, a) is bounded above in ~I. We let ~ be the class of regular models of B. 
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Notice that the regular structures of [3] are just the members of 

~N = ~ fq T~N = ~ fq Md(N fq V2). 

Our first theorem strengthens the remark in [3, p. 160, last paragraph]. 

THEOREM 7. For each 3a-formula O(w,x) there is a A-formula q~(w,x,y) 

such that the following holds. For each ~1 C gt, sequence a of elements of 9l 

(matching x), element b of 9[ such that K(91, a) < b, and sequence n of elements of 
to (matching w), 

911 = ~h (n, a) ¢:~ 911 = ~k(n,a, b). 

PROOV. There is some quantifier-free formula O(u, v, w, x) such that ~b is the 

formula (3u)  (Vv)O(u, v, w,x). Let tp be the formula 

(3u < y) (Vv < y)0  (u, v, w, x).  

The required result now follows using Lemma 3. 

This theorem can be used to give a simple proof of [3, 11.9]. 

For each 9l E ~ let A(g[) be the set of number theoretic relations R(w) such 

that for some A-formula O(w,x) and sequence a of elements of 91, 

R (n) ¢:~ 91~ O(n,a) 

(where, of course, n is a sequence of elements of ~o). 

THEOREM 8. Let ~1 E Yr. Then A(91) is closed under arithmetical definability. 

PROOF. Clearly A(9/) is closed under the propositional connectives, so it is 

sufficient to show that A(gl) is closed under existential quantification. 

Let R(v, w)@ A(91) and let O(v, w,x) be a A-formula and a a sequence of 

elements of ~,)l such that 

R (m,n) ez~ ~l~ O(m,n,a).  

Then 

(3v)R (v, n) ~ 911= (3v)[I(v)  ^ O(v, n,a)] 

so that, since the right hand formula is B-equivalent to an 32-formula, the 

required result follows by Theorem 7. 

Finally we come to the main result of this note. 

Given two models 9d, ~ ,  of B such that ~ C 2l, we say ~ is bounded below in 

if there is an infinite element d of 9,I such that for each infinite element e of ~ ,  

d < e .  



Vol. 23, 1976 REGULAR NUMBER STRUCTURES 351 

THEOREM 9. Let ~1E ~ and let a be an element of ?1. Then KC)I , a  ) is 

bounded below in ~1. 

PRooF. Since ~[ E ~ there  is some  e l emen t  p of ?I such that  K (Pl, a )  < p. 

Cons ider  the set X C_ to defined by 

n E X ¢:> ?ll = (3v)[- 'nJ(v,p) A D (v,a, n)] .  

By T h e o r e m  7 there  is some A-formula  O(x, wh w2, y)  and e lement  b of ?1 such 

that  
n E X ¢:> ?l~ O(n,a,p,b). 

Let  ~b(y, z, a,p, b) be the A-formula  (with pa r ame te r s  a,p, b) 

(Vx < y)  [O(x, a,p,b)---~(3v < p) (3u < p) [T(u, v, a ,X)A Z < V]] 

and let t0(y, a, p, b)  be the 3 , - fo rmula  

( 3 x ) ( ~ J ( z , p )  A 6 (Y,z ,a ,P ,  b)] .  

For  each n E X let c, be an e lement  of ~)1 such that  

? l ~ J ( c , , p ) ,  ~J~D(c , ,a ,n ) .  

Notice that  L e m m a  5(ii) shows that  c° is infinite. 

Cons ider  any m E to and let d be an infinite e lement  of ?l such that  

d < rain{c°" n E X,n < m}. 

If K(?~[, a )  is bounded  below in Pl by d then we are done.  If not then there  is 

some infinite e l emen t  c of K ( P [ , a ) s u c h  that  c < d, and so for each n E X, n < m 

~11= (::lv) [D (v,a, n)A C < v]. 

But K(Pl,  a ) < 2 ~ l  so for  each n E X, n < m, 

K (~[, a) l= O r )  [D (v, a, n)  ^ c < v ] .  

Thus,  for each n E X, n < m, 

?[t= (3v  < p )  (3u  < p ) [ T ( u ,  v ,a ,n)Ac < v] 

so that  ?! I = ,b(m, c, a, p, b). Hence ,  since c is an infinite e lement  of K(?I ,  a) ,  

?l~ to(m,a,p,b).  

Now to is an 3 r f o r m u l a  so that  L e m m a  6 gives us an infinite e lement  q of ?l 

such that  
?l~to(q,a,p,b) .  
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In part icular  there  is some infinite e lement  d of 9.3[ such that 

(a) n E X :ff 911 = ( 3 v ) [ D ( v ,  a, n) A d < v].  

We show that K ( 9 [ , a )  is bounded  below in ?! by d. 

Let  e be any infinite e lement  of K ( ? l , a ) .  So 

([3) 9[ ~ ---qJ (e, p ) 

and, by L e m m a  4, there  is some n ~ oJ such that 

(?) 91 t = D (e, a, n) 

(8) 91[ I = (Vv,, v2) [D (v,, a, n)  ^ D (v2, a, n)---~ vl = v~l. 

From (13), (~/) we see that n E X and so (a), (~) give d < e, as required.  
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